60,096 research outputs found

    Fuzzy Logic Path Planning System for Collision Avoidance by an Autonomous Rover Vehicle

    Get PDF
    Systems already developed at JSC have shown the benefits of applying fuzzy logic control theory to space related operations. Four major issues are addressed that are associated with developing an autonomous collision avoidance subsystem within a path planning system designed for application in a remote, hostile environment that does not lend itself well to remote manipulation of the vehicle involved through Earth-based telecommunication. A good focus for this is unmanned exploration of the surface of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. The four major issues addressed are: (1) avoidance of a single fuzzy moving obstacle; (2) back off from a dead end in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system

    Fuzzy logic control system to provide autonomous collision avoidance for Mars rover vehicle

    Get PDF
    NASA is currently involved with planning unmanned missions to Mars to investigate the terrain and process soil samples in advance of a manned mission. A key issue involved in unmanned surface exploration on Mars is that of supporting autonomous maneuvering since radio communication involves lengthy delays. It is anticipated that specific target locations will be designated for sample gathering. In maneuvering autonomously from a starting position to a target position, the rover will need to avoid a variety of obstacles such as boulders or troughs that may block the shortest path to the target. The physical integrity of the rover needs to be maintained while minimizing the time and distance required to attain the target position. Fuzzy logic lends itself well to building reliable control systems that function in the presence of uncertainty or ambiguity. The following major issues are discussed: (1) the nature of fuzzy logic control systems and software tools to implement them; (2) collision avoidance in the presence of fuzzy parameters; and (3) techniques for adaptation in fuzzy logic control systems

    Contaminant ions and waves in the space station environment

    Get PDF
    The probable plasma (ions and electrons) and plasma wave environment that will exist in the vicinity of the Space Station and how this environment may affect the operation of proposed experiments are discussed. Differences between quiescent operational periods and non-operational periods are also addressed. Areas which need further work are identified and a course of action suggested

    Diet-Regulated Anxiety

    Get PDF
    Peer reviewedPublisher PD

    Detection of high levels of congenital transmission of toxoplasma gondii in natural urban populations of mus domesticus

    Get PDF
    The relative importance of different transmission routes of Toxoplasma gondii has been a matter for debate. This ubiquitous parasite is generally thought to be transmitted by infective oocysts excreted by the definitive host, the cat. Ingestion of undercooked meat has also been considered an important route of transmission in many mammals while congenital transmission has generally been considered relatively rare. Experimental studies demonstrate the ability of T. gondii to be transmitted congenitally, but few studies have investigated the frequency of this transmission route in natural populations. We use PCR amplification of the SAG1 gene to investigate the frequency of congenital transmission in a wild population of mice (Mus domesticus) and show that congenital transmission is occurring in 75% of pregnancies in this population. Furthermore, for infected pregnant mice, transmission occurs to at least one foetus in 100% of cases while variable penetrance of congenital infection is observed. These high levels of congenital transmission in this wild population of mice, taken together with other recent data on congenital transmission in sheep, suggests that this phenomenon might be more widespread than previously thought

    Drawn to the Sea: Charles Bradford Hudson (1865-1939), Artist, Author, Army Officer, with Special Notice of His Work for the United States Fish Commission and Bureau of Fisheries

    Get PDF
    The biography of Charles Bradford Hudson that follows this preface had its seeds about 1965 when I (VGS) was casually examining the extensive files of original illustrations of fishes stored in the Division of Fishes, National Museum of Natural History, Smithsonian Institution. I happened upon the unpublished illustration of a rainbow trout by Hudson and was greatly impressed with its quality. The thought occurred to me then that the artist must have gone on to do more than just illustrate fishes. During the next 20 years I occasionally pawed through those files, which contained the work of numerous artists, who had worked from 1838 to the present. In 1985, I happened to discuss the files with my supervisor, who urged me to produce a museum exhibit of original fish illustrations. This I did, selecting 200 of the illustrations representing 21 artists, including, of course, Hudson. As part of the text for the exhibit, Drawn from the Sea, Art in the Service of Ichthyology, I prepared short biographies of each of the artists. The exhibit, with an available poster, was shown in the Museum for six months, and a reduced version was exhibited in U.S. and Canadian museums during the next 3 years

    Intake Ground Vortex Prediction Methods

    Get PDF
    For an aircraft turbofan engine in ground operations or during the take-off run a ground vortex can occur which is ingested and could potentially adversely affect the engine performance and operation. The vortex characteristics depend on the ground clearance, intake flow capture ratio and the relative wind vector. It is a complex flow for which there is currently very little appropriate quantitative preliminary design information. These aspects are addressed in this work where a range of models are developed to provide a method for estimating the key metrics such as the formation boundary and the ground vortex size and strength. Three techniques are presented which utilize empirical, analytical and semi-empirical approaches. The empirical methods are primarily based on a large dataset of model-scale experiments which quantitatively measured the ground vortex characteristics for a wide range of configurations. These include the effects of intake ground clearance, approaching boundary layer thickness, intake Mach number and capture velocity ratio. Overall the models are able to predict some of the key measured behaviours such as the velocity ratio for maximum vortex strength. With increasing empiricism for key sub-elements of the model construction, an increasing level of agreement is found with the experimental results. Overall the three techniques provide a relatively quick and easy method in establishing the important vortex characteristics for a given headwind configuration which is of significant use from a practical engineering perspective

    Aerosol particle molecular spectroscopy

    Get PDF
    The molecular spectroscopy of a solution particle by structure resonance modulation spectroscopy is discussed [S. Arnold and A. B. Pluchino, "Infrared Spectrum of a Single Aerosol Particle by Photothermal Modulation of Structure Resonances," Appl. Opt. 21, 4194 (1982); S. Arnold et al., "Molecular Spectroscopy of a Single Aerosol Particle," Opt. Lett. 9, 4 (1984)]. Analytical equations are derived for time dependence of the particle radius as it interacts with a low intensity IR source (<20 mW/cm^2). This formalism is found to be in good agreement with pulsed experiments. Working equations for the spectroscopy are derived for both constant and periodic IR excitation
    • …
    corecore